Retinotopic Organization of Small-Field-Target-Detecting Neurons in the Insect Visual System

نویسندگان

  • Paul D. Barnett
  • Karin Nordström
  • David C. O'Carroll
چکیده

BACKGROUND Despite having tiny brains and relatively low-resolution compound eyes, many fly species frequently engage in precisely controlled aerobatic pursuits of conspecifics. Recent investigations into high-order processing in the fly visual system have revealed a class of neurons, coined small-target-motion detectors (STMDs), capable of responding robustly to target motion against the motion of background clutter. Despite limited spatial acuity in the insect eye, these neurons display exquisite sensitivity to small targets. RESULTS We recorded intracellularly from morphologically identified columnar neurons in the lobula complex of the hoverfly Eristalis tenax. We show that these columnar neurons with exquisitely small receptive fields, like their large-field counterparts recently described from both male and female flies, have an extreme selectivity for the motion of small targets. In doing so, we provide the first physiological characterization of small-field neurons in female flies. These retinotopically organized columnar neurons include both direction-selective and nondirection-selective classes covering a large area of visual space. CONCLUSIONS The retinotopic arrangement of lobula columnar neurons sensitive to the motion of small targets makes a strong case for these neurons as important precursors in the local processing of target motion. Furthermore, the continued response of STMDs with such small receptive fields to the motion of small targets in the presence of moving background clutter places further constraints on the potential mechanisms underlying their small-target tuning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.

Anatomical methods have identified conserved neuronal morphologies and synaptic relationships among small-field retinotopic neurons in insect optic lobes. These conserved cell shapes occur across many species of dipteran insects and are also shared by Lepidoptera and Hymenoptera. The suggestion that such conserved neurons should participate in motion computing circuits finds support from intrac...

متن کامل

Local diversity and fine-scale organization of receptive fields in mouse visual cortex.

Many thousands of cortical neurons are activated by any single sensory stimulus, but the organization of these populations is poorly understood. For example, are neurons in mouse visual cortex--whose preferred orientations are arranged randomly--organized with respect to other response properties? Using high-speed in vivo two-photon calcium imaging, we characterized the receptive fields of up t...

متن کامل

Retinotopic organization of the lateral suprasylvian area of the cat.

The retinotopic organization of the lateral suprasylvian area (L.S.A.) was investigated by microelectrode recording from single neurons. 560 penetrations were made on the medial and lateral banks of the middle suprasylvian sulcus (M.S.S.). The receptive field positions, of single neurons were mapped in relation to the retinal landmarks. A striking variability of the visuotopic organization from...

متن کامل

Basal Dendrites of Layer-III Pyramidal Neurons do not Scale with Changes in Cortical Magnification Factor in Macaque Primary Visual Cortex

Neurons in the mammalian primary visual cortex (V1) are systematically arranged across the cortical surface according to the location of their receptive fields (RFs), forming a visuotopic (or retinotopic) map. Within this map, the foveal visual field is represented by a large cortical surface area, with increasingly peripheral visual fields gradually occupying smaller cortical areas. Although c...

متن کامل

Color Selectivity of Neurons in the Posterior Inferior Temporal Cortex of the Macaque Monkey

We recorded the activities of neurons in the lateral surface of the posterior inferior temporal cortex (PIT) of 3 hemispheres of 3 monkeys performing a visual fixation task. We characterized the color and shape selectivities of each neuron, mapped its receptive field (RF), and studied the distributions of these response properties. Using a set of color stimuli that were systematically distribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007